Posted in

从 190s 到 1s:MySQL 千万级数据查询优化_AI阅读总结 — 包阅AI

包阅导读总结

1. 关键词:

– MySQL

– 千万级数据

– 查询优化

– 覆盖索引

– 回表

2. 总结:

本文主要探讨 MySQL 千万级数据的查询优化策略,包括创建存储过程生成数据,通过建立覆盖索引、减少数据量、小表驱动大表等方法提升查询速度,还介绍了 MySQL 的查询执行类型、回表机制及优化建议。

3. 主要内容:

– 千万级数据优化背景

– 表设计烂且业务规则限制,只能优化 SQL

– 数据生成与表结构

– 生成用户和订单数据的存储过程

– `users`和`orders`表结构及索引

– 优化策略

– 初始查询及 explain 分析,全表扫描耗时 190+s

– 创建普通索引,查询变慢至 460+s,推测回表机制影响

– 创建覆盖索引,查询时间降至 10s

– 减少数据量,查询时间降至 7s

– 小表驱动大表策略在此无效

– IN 子句与强制索引

– 相关知识

– MySQL 查询执行类型及含义

– 回表机制及优化建议

思维导图:

文章地址:https://mp.weixin.qq.com/s/-dLbMYqMaq1_hmUHLOrtRw

文章来源:mp.weixin.qq.com

作者:nine

发布时间:2024/6/13 10:38

语言:中文

总字数:4344字

预计阅读时间:18分钟

评分:86分

标签:MySQL,数据库优化,SQL 性能,索引,大数据


以下为原文内容

本内容来源于用户推荐转载,旨在分享知识与观点,如有侵权请联系删除 联系邮箱 media@ilingban.com

首先要声明的就是,千万级数据对于MySQL来说就是不太合理的一个存在。

优化MySQL千万级数据策略还是比较多的:

这里讨论的情况是在MySQL一张表的数据达到千万级别。表设计很烂,业务统计规则又不允许把sql拆成多个子查询。

在这样的情况下,开发者可以尝试通过优化SQL来达到查询的目的。

当MySQL一张表的数据达到千万级别,会出现一些特殊的情况。这里主要是讨论在比较极端的情况下SQL的优化策略。

通过存储过程传递函数制造1000万条数据。

表结构如下:

CREATE TABLE `orders` (  `order_id` int NOT NULL AUTO_INCREMENT,  `user_id` int DEFAULT NULL,  `order_date` date NOT NULL,  `total_amount` decimal(10,2) NOT NULL,  PRIMARY KEY (`order_id`),  KEY `idx_user_id` (`user_id`) USING BTREE,  KEY `idx_user_amount` (`user_id`,`total_amount`) USING BTREE) ENGINE=InnoDB AUTO_INCREMENT=1 DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_general_ci;
CREATE TABLE `users` ( `user_id` int NOT NULL AUTO_INCREMENT, `username` varchar(50) COLLATE utf8mb4_general_ci NOT NULL, `email` varchar(100) COLLATE utf8mb4_general_ci NOT NULL, `created_at` timestamp NULL DEFAULT CURRENT_TIMESTAMP, PRIMARY KEY (`user_id`), KEY `idx_user_id` (`user_id`) USING BTREE) ENGINE=InnoDB AUTO_INCREMENT=1 DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_general_ci;

造数据的存储过程如下。

用户数据:

-- 产生用户存储过程,1000CREATE DEFINER=`root`@`localhost` PROCEDURE `create_users`()BEGIN    DECLARE i INT DEFAULT 0;    DECLARE total_users INT DEFAULT 1000; -- 调整用户数量    DECLARE rnd_username VARCHAR(50);    DECLARE rnd_email VARCHAR(100);
WHILE i < total_users DO -- 生成随机用户名和邮箱 SET rnd_username = CONCAT('User', FLOOR(1 + RAND() * 10000000)); -- 假设用户名唯一 SET rnd_email = CONCAT(rnd_username, '@example.com'); -- 假设邮箱唯一 -- 将数据插入用户表 INSERT INTO users (username, email) VALUES (rnd_username, rnd_email);

SET i = i + 1; END WHILE;END

订单数据生成存储过程如下:

CREATE DEFINER=`root`@`localhost` PROCEDURE `generate_orders`()BEGIN    DECLARE i INT DEFAULT 0;    DECLARE total_users INT DEFAULT 1000; -- 用户数量    DECLARE total_orders_per_user INT DEFAULT 1000; -- 每个用户的订单数量    DECLARE rnd_user_id INT;    DECLARE rnd_order_date DATE;    DECLARE rnd_total_amount DECIMAL(10, 2);    DECLARE j INT DEFAULT 0;
WHILE i < total_users DO -- 获取用户ID SELECT user_id INTO rnd_user_id FROM users LIMIT i, 1;

WHILE j < total_orders_per_user DO -- 生成订单日期和总金额 SET rnd_order_date = DATE_ADD('2020-01-01', INTERVAL FLOOR(RAND() * 1096) DAY); -- 2020-01-01和2022-12-31之间的随机日期 SET rnd_total_amount = ROUND(RAND() * 1000, 2); -- 0到1000之间的随机总金额 -- 将数据插入订单表 INSERT INTO orders (user_id, order_date, total_amount) VALUES (rnd_user_id, rnd_order_date, rnd_total_amount);
SET j = j + 1; END WHILE;SETj=0;
SET i = i + 1; END WHILE;END

将users和orders的数据生成分开,这样可以通过多次调用orders存储过程多线程参数数据。


调用一次call create_users(),然后开15个窗口调用orders存储过程call generate_orders()。


整个过程会产生1000个用户,15*1000*1000也就是1500万条订单数据。

这是一个很简单的sql,统计每个用户的订单总额。

在默认情况下,什么索引都没有创建,需要花费190+s的时间。

SELECT a.*,sum(b.total_amount) as total from users a left join orders b  on a.user_id = b.user_idgroup by a.user_id;

explain分析如下:

id select_type table partitions type possible_keys key key_len ref rows filtered Extra
1 SIMPLE a ALL PRIMARY 1000 100.0 Using temporary
1 SIMPLE b ALL 13016086 100.0 Using where; Using join buffer (hash join)

可以看到什么索引也没使用,type为all,直接全表扫描。

用时191s。

把查询条件用到的sql条件都创建索引。也就是where和join、sum涉及到的知道。

CREATE INDEX idx_orders_user_id ON orders (user_id);CREATE INDEX idx_orders_total_amount ON orders (total_amount);CREATE INDEX idx_users_user_id ON users (user_id);

查询sql仍然是第一个版本。

SELECT a.*,sum(b.total_amount) as total from users a left join orders b  on a.user_id = b.user_idgroup by a.user_id;

先看看expalin的结果:

id select_type table partitions type possible_keys key key_len ref rows filtered Extra
1 SIMPLE a index PRIMARY,idx_users_user_id PRIMARY 4 1 100.0
1 SIMPLE b ref idx_orders_user_id idx_orders_user_id 5 test2.a.user_id 13003 100.0

type为index或者ref,全部走的索引。

查询结果却让人失望,这次用的时间更多,用了460+s。也就是说查询变慢了。

推测是由于mysql的回表机制导致查询变得更慢了。所以接下来继续优化索引。

覆盖索引是指一个索引包含了查询所需的所有列,从而可以满足查询的要求,而不需要访问实际的数据行。

通常情况下,数据库查询需要根据索引定位到对应的数据行,然后再从数据行中获取所需的列值。

而当索引中包含了查询所需的所有列时,数据库引擎可以直接通过索引就能够满足查询的要求,无需访问实际的数据行,这样就可以提高查询性能。

这也是普通索引添加了还是查询慢的原因,因为普通索引命中了还是会去找主键,通过主键找到关联字段的值做过滤。

CREATE INDEX idx_orders_total_amount_user_id ON orders (total_amount,user_id);CREATE INDEX idx_orders_user_id_total_amount ON orders (user_id,total_amount);

1500万数据创建索引就花费了300+s。所以创建索引得适度。

查询sql还是第一个版本。

SELECT a.*,sum(b.total_amount) as total from users a left join orders b  on a.user_id = b.user_idgroup by a.user_id;

先看看expalin的结果:


id select_type table partitions type possible_keys key key_len ref rows filtered Extra
1 SIMPLE a index PRIMARY,idx_users_user_id PRIMARY 4 1 100.0
1 SIMPLE b ref idx_orders_user_id,idx_orders_user_id_total_amount idx_orders_user_id_total_amount 5 test2.a.user_id 874 100.0 Using index

可以看到orders表的type从index提升到了ref。

此时的查询时间为从460s+降低到10s了。

结果证明覆盖索引能提升查询速度。

问题就在于这次建的两个覆盖索引,只有 idx_orders_user_id_total_amount 降低了查询时间,而 idx_orders_total_amount_user_id没有。

这个和mysql的关键词执行顺序有一定关系(推测,没找到资料)。

mysql执行顺序如下:

fromonjoinwheregroup byhavingselectdistinctunion (all)order bylimit

可以看到在覆盖索引使用过程先是where,再是到select的sum函数。这也是 idx_orders_user_id_total_amount 索引的创建顺序。

drop INDEX idx_orders_user_id ON orders;drop INDEX idx_orders_total_amount ON orders;drop INDEX idx_orders_total_amount_user_id ON orders;

drop掉相关的多余索引可以发现执行查询时间没有变化,仍然为10s。

索引优化这块差不多就是通过覆盖索引来命中索引。

减少数据量在业务上来说就是移除不必要的数据,或者可以在架构设计这块做一些工作。

分表就是这个原则。

通过这个方式能把千万的数据量减少到百万甚至几十万的量。提升的查询速度是可以想象的。

SELECT a.*,sum(b.total_amount) as total from users a left join orders b  on a.user_id = b.user_idwhere a.user_id > 1033group by a.user_id;

expain结果如下:


id select_type table partitions type possible_keys key key_len ref rows filtered Extra
1 SIMPLE a range PRIMARY,idx_users_user_id PRIMARY 4 685 100.0 Using where
1 SIMPLE b ref idx_orders_user_id_total_amount idx_orders_user_id_total_amount 5 test2.a.user_id 874 100.0 Using index

可以看到users表的type为range。能过滤一部分数据量。

查询时间从10s降低到7s,减少数据量证明有效。

在 MySQL 中,通常情况下,优化器会根据查询条件和表的大小选择合适的驱动表(即主导表)。

小表驱动大表是一种优化策略,它指的是在连接查询中,优先选择小表作为驱动表,以减少连接操作所需的内存和处理时间。

在第三次优化的结果上,可以尝试使用小表驱动大表优化策略。

SELECT a.*,sum(b.total_amount) as total from users aleft join (select user_id,total_amount from orders c where c.user_id > 1033 ) b  on a.user_id = b.user_idwhere a.user_id > 1033group by a.user_id;

将left join的表修改为子查询,能提前过滤一部分数据量。

expain结果如下:

id select_type table partitions type possible_keys key key_len ref rows filtered Extra
1 SIMPLE a range PRIMARY,idx_users_user_id PRIMARY 4 685 100.0 Using where
1 SIMPLE c ref idx_orders_user_id_total_amount idx_orders_user_id_total_amount 5 test2.a.user_id 874 100.0 Using where; Using index

可以看到explain没什么变化。实际执行效果也没啥变化。

小表驱动大表在这里无效,但是可以结合具体的业务进行优化sql。这个策略是没问题的。

当 MySQL 中的 IN 子句用于查询千万级数据时,如果未正确设计和使用索引,可能导致索引失效,从而影响查询性能。

通常情况下,MySQL 的优化器会根据查询条件选择最优的执行计划,包括选择合适的索引。然而,对于大数据量的 IN 子句查询,MySQL 可能无法有效使用索引,从而导致全表扫描或索引失效。

查询sql如下,由于in的数据量不是很稀疏,实际查询强制索引和普通索引效果一致

SELECT a.*,sum(b.total_amount) as total from users a left join orders b force index (idx_orders_user_id_total_amount)  on a.user_id = b.user_idwhere b.user_id in (1033,1034,1035,1036,1037,1038)group by a.user_id;SELECT a.*,sum(b.total_amount) as total from users a left join orders b  on a.user_id = b.user_idwhere b.user_id in (1033,1034,1035,1036,1037,1038)group by a.user_id;

查询时间都是零点几秒。

笔者在实际业务中是遇到过这种场景的,业务sql更加复杂。这里由于临时创建的订单用户表没复现。

当你发现explain都是命中索引的,但是查询依然很慢。这个强制索引可以试试。

  • 提前命中索引,小表驱动大表

  • 千万级数据in索引失效,进行强制索引

  • 使用覆盖索引解决回表问题

关于命中索引核心点就是覆盖索引,再者是千万数据产生的特有场景需要走强制索引。

在 MySQL 的 EXPLAIN 查询结果中,type 字段表示了查询使用的访问类型,即查询执行过程中的访问方法。

根据不同的访问类型,MySQL 查询优化器将选择不同的执行计划。以下是 type 字段可能的取值及其含义:

  • system:这是最好的情况,表示查询只返回一行结果。这通常是通过直接访问表的 PRIMARY KEY 或唯一索引来完成的。

  • const:表示 MySQL 在查询中找到了常量值,这是在连接的第一个表中进行的。由于这是常量条件,MySQL 只会读取一次表中的一行数据。例如,通过主键访问一行数据。

  • eq_ref:类似于 const,但在使用了索引的情况下。此类型的查询是通过某个唯一索引来访问表的,对于每个索引键值,表中只有一行匹配。常见于使用主键或唯一索引进行连接操作。

  • ref:表示此查询使用了非唯一索引来查找值。返回的是所有匹配某个单独值的行。该类型一般出现在联接操作中,使用了非唯一索引或者索引前缀。

  • range:表示查询使用了索引来进行范围检索,通常出现在带有范围条件的查询语句中,例如 BETWEEN、IN()、>、<等。

  • index:表示 MySQL 将扫描整个索引来找到所需的行。这通常是在没有合适的索引的情况下,MySQL 会选择使用这种访问类型。

  • all:表示 MySQL 将扫描全表以找到所需的行,这是最差的情况。这种情况下,MySQL 将对表中的每一行执行完整的扫描。

通常来说,type 字段的排序从最好到最差依次是 system、const、eq_ref、ref、range、index、all,当然,实际情况取决于查询的具体情况、表结构和索引的使用情况。更好的查询性能通常对应着更好的 type 类型。

在 MySQL 中,回表(”ref” or “Bookmark Lookup” in English)是指在使用索引进行查询时,MySQL 首先通过索引找到满足条件的行的位置,然后再回到主表(或称为数据表)中查找完整的行数据的过程。

这个过程通常发生在某些查询中,特别是涉及到覆盖索引无法满足查询需求时。

当一个查询不能完全通过索引满足时,MySQL 就需要回到主表中查找更多的信息。这种情况通常出现在以下几种情况下:

  • 非覆盖索引查询:如果查询需要返回主表中未包含在索引中的其他列的数据时,MySQL 就需要回到主表中查找这些额外的列数据。

  • 使用索引范围条件:当查询中使用了范围条件(例如 BETWEEN、>、< 等),而索引只能定位到范围起始位置时,MySQL 需要回到主表中检查满足范围条件的完整行。

  • 使用了聚簇索引但需要查找的列不在索引中:在使用了聚簇索引的表中,如果需要查询的列不在聚簇索引中,MySQL 需要回到主表中查找这些列的数据。

当 MySQL 需要执行回表操作时,会发生额外的磁盘访问,因为需要读取主表中的数据。这可能会导致性能下降,特别是在大型数据表中或者在高并发环境中。

为了尽量减少回表操作的发生,可以考虑以下几点:

  • 创建覆盖索引:确保查询所需的所有列都包含在索引中,从而避免回表操作。

  • 优化查询语句:尽量避免使用范围条件,或者确保所有的过滤条件都可以被索引完全匹配。

  • 考虑表设计:在设计数据库表结构时,可以考虑将常用的查询字段都包含在索引中,以减少回表操作的发生。